Ceramic Technology Development In Support Of The DOE Advanced Microturbine Systems Initiative

Hot Section Components in Advanced Microturbines (Subcontract #4000000986)
High-Velocity High-Pressure Burner Rig (Subcontract #40000006367)
Advanced Microturbine System (Cooperative Agreement #DE-FC02-00CH11061)

Honeywell Engines, Systems & Services

Dr. Bjoern Schenk (Advanced Technology)
Dr. Thomas Strangman (Materials & Process Engineering)
Dr. Chien-Wei Li (Honeywell Labs)
Dr. James Wimmer (Ceramic Components)

Peer Review of the Microturbine and Industrial Turbine Programs Fairfax, VA March 12-14, 2002

Principal Commercialization Barriers

- Inadequate oxidation protection technology
- Inadequate facilities available to screen candidate substrate material and novel coating systems prior to high risk engine tests
- Immature low-cost near-net-shape fabrication processes
- Insufficient publicly available material design database of latest ceramic material vintage

Honeywell's DOE-Funded Program Suite Addresses All Barriers And Enables Accelerated Commercialization of Ceramics in Small Gas Turbines

Hot Section Components in Advanced Microturbines Subcontract No. 4000000986 from UT Battelle LLC

Motivation

- Low-Velocity Burner Rig Testing Revealed Paralinear Recession of Silicon-Based Materials in Microturbine Environments
- Allison Engine Tests Confirmed Expected Excessive Material Recession of Uncoated AS800 Nozzles
- Keiser Rig Testing Indicated Degradation of Uncoated AS800 Even in Quasi-Stagnant Moist Environment
- Initial Testing of Honeywell EBC Indicated Significant Benefit to Environmental Resistance
- Coating Process Development and Environmental Resistance Data on Coated AS800 and AS950EXP Needed

Program Has Two Phases

- Phase I (3 months)
 - Task 1: Advanced Microturbine Scoping Studies and Research Plan
- Phase II (21 months)
 - Task 1: Environmental Effects (Uncoated)
 - Task 2: Technology Assessment for Environmental Protection (First Generation Environmental Barrier Coatings)
 - Task 3: Rapid Prototyping (Discontinued)
 - Task 4: Substrate Material Specimens Preparation for Next Generation EBC Development
 - Task 5: AS950EXP Gelcast Substrate Process Refinement

Phase I - Task I: Advanced Microturbine Scoping Studies

Microturbine Conditions Required to Guide Material Test Matrix

Microturbine Hot Section Environment

- Temperature
- Total Pressure
- Water Vapor Content
- Gas Velocity

Survey of Microturbine OEMs

- Honeywell Power Systems
- Capstone
- Ingersoll Rand
- Williams
- Allison
- Teledyne
- UTRC (verbal input)
- Elliot Turbine (declined to provide information)
- GE (no response)

Strawman Envelope Used to Guide Discussions

PARAMETER	STRAWMAN	PROPOSED
TEMPERATURE	1900 – 2300°F	1800 - 2400°F
TOTAL PRESSURE	5 – 10 ATM	4 -10 ATM
WATER VAPOR	5 – 15%	3 – 20%
GAS VELOCITY	0 – 250 fps	0 – Mach 1*

^{*}Limited by available rig capability

 Small Modifications to Strawman Envelope Satisfy Customer Requirements

Companies Also Surveyed on Microturbine Component Needs

Engine Company

		Inserted Axial Blades	Integral Axial Rotor	Integral Radial Rotor	Individ Nozzles	Integral Axial Nozzle	Integral Radial Nozzle	Turbine Shroud	Combustor
	1								
•	2								
	3								
	4								
	5								
	6								
	7								

Phase II - Task 1: Environmental Effects

Materials Selected for Environmental Effects Testing

MATERIAL	FABRICATION PROCESS	RATIONALE FOR MATERIAL SELECTION
AS800	Slipcast	Currently Used in RR Allison 501k Turbine Nozzles, Solar Centaur Turbine Blades, and APU Hot Section Components.
AS800	Gelcast	Near-net-shape forming process. Process can be automated.
AS950EXP	Slipcast	Baseline comparison with AS800.

Focus on As-Processed Surfaces

ORNL to Provide Environmental Testing and Characterization

- Keiser Rig
 - Hanging Samples Approximately 25 x 50 x 3 mm
 - Can Section Each Into 3 Mil-B Flexural Bars
- High & Low Flow Rigs
 - Availability/Timing Unknown
- Recommendations for Initial Environmental Test Matrix
 - 3 temperatures 1800, 2100, 2400°F
 - 3 water vapor contents 0.3, 1, 2 atm
 - time 500, 1000, 1500, 2000 hr
 - Slipcast AS800, Gelcast AS800, Slipcast AS950EXP
 - Variation of Total System Pressure Required?

Effect of Total System Pressure on Recession

- Screening Experiment Conducted to Evaluate Effect of Total System Pressure (Oxygen and Nitrogen Partial Pressure) on Recession
 - Test Temperature: 2400F
 - Test Duration: 1000 hours
 - Tube #1: N₂ with 25vol% H₂O at 8 atm total system pressure
 - $p(N_2) = 6$ atm

 $p(H_2O) = 2 atm$

- no oxygen
- Tube #2: Air with 20vol% H₂O at 10 atm total system pressure
 - $p(N_2) = 6.24$ atm

 $p(H_2O) = 2 atm$

- $p(O_2) = 1.68 atm$
- Slipcast AS800, Gelcast AS800, Slipcast AS950EXP
- Total System Pressure Had Negligible Effect on Silicon Nitride Oxidation Kinetics and Microstructural Damage
- Total System Pressure Eliminated As Parameter for Keiser Rig Design of Experiment

Initial Test Matrix for Keiser Rig Exposure

- 8 Plates (min) of Each Uncoated Material for Each Run Required
- Coated Samples to Be Exposed in Separate Tubes at Selected Conditions for Evaluation & Comparison

Phase II - Task 2: Technology Assessment for Environmental Protection (First Generation EBCs)

Coating Requirements

- Thermodynamically stable in operating environment up to 1400°C
 - no significant grain growth & phase transformations
 - high stability against reactions with oxygen, water vapor, and all other constituents of and impurities contained in gas turbine combustion gas flow
 - low vapor pressure at service conditions
- Effective oxygen and water vapor diffusion barrier
- Thermal expansion similar to Si₃N₄ to minimize spallation potential
- Good adherence to as-processed silicon nitride component surfaces
- Chemical compatibility to substrate material
- Chemically compatible to SiO₂
- Applicable to complex-shaped components
- Repeatable thickness, grain size distribution, and porosity
- Reasonable small particle impact and erosion resistance
- Minimal impact on substrate strength
- Affordable

EBC Has Been Applied by Air Plasma Spray (APS) and EB-PVD

- Plasma Spray
 - Coating is Dense
 - "Low" Temperature Phase
 - Cyclic Furnace Testing
 Demonstrated Good
 Adherence

- EB-PVD
 - Various Trial Runs for Process
 Optimization in Progress
- Coatings are Thermally Treated to Characterize Grain Growth
- Coating are Thermally Cycled to Characterize Adherence

Supplementary IR&D Work on First Generation EBCs Has Been Conducted

- Control of Phase Transformation
 - Phase Transformation at Elevated Temperatures (>2400F) Can Induce Cracking
 - Non Issue for Current Microturbine Applications, but Concern at Higher Temperatures
- Control of Grain Growth
 - Maintain Coating Strength
- Control of Thermal Expansion
 - Match CTE of Silicon Nitride
- Sprayable Powder With Tailored Compositions Demonstrated
- Tailored Compositions Improved Coating Cyclic Performance at 2400°F
- Promising Grain Growth and Transformation Inhibitors Identified
- Three Batches of Improved Compositions Were Plasma-Sprayed and Cyclic Tested
- Keiser Rig Validation in Progress

Separate DOE-Funded R&D Program Supports APS EBC Maturation

- Identify Optimized Plasma Spray Processing Parameters
- Fundamental Understanding of Compositional Variations on Microstructure Development
- Establish Microstructure-Property Relationship
- Characterize and Understand Bonding Strength

First Generation EBC Development

APS EBC after testing at 2200 F/500 h/1000 cycles

Grain growth of EBC at high temperature

As-deposited (plasma)

After 500 hours at 2200F

EB-PVD EBC after testing at 2200 F/500 h/1000 cycles

Control grain growth of EBC by alloying

Composition A

Composition B (from liquid precursor)

Test Results Suggest That Further EBC Development Is Required

Keiser Rig Testing: 500 h @ 2400F, 2 atm p_{H2O}

uncoated coated

- Cracked cristobalite scale thickness similar on coated and uncoated specimen
- Latest and future IR&D activities focus on
 - better oxygen diffusion barrier capabilities & controlled oxygen reaction
 - low cost coating application methods for complex shaped parts
 - graded materials development

High-Velocity High-Pressure Burner Rig

Subcontract No. 4000006367 from UT Battelle LCC

Design Requirements

Design Requirements

- Test section maximum operating conditions
 - Gas Temperature 3000°F
 - Equivalent Diameter 1.0 inch
 - Average Gas Velocity 2700 ft/s
 - Partial Pressure of Water Vapor 70 psia (in combustor)
 - Stress Rupture Test Capability
- Rig intended for long periods of operation (1000's of hours)
 - Operating costs to be minimized
 - Durability natural requirement for extended operation
- Will provide ability to expose most promising ceramics and coatings at environmental conditions typical of turbine nozzles and blades
- Will provide oxidation information at conditions well beyond current experimental database
 Honeywell

Operating Conditions

- Natural Gas selected as fuel
 - Higher hydrocarbon content than standard liquid fuels
 - Lower flame radiation to liner walls
 - No nozzle coking problems
 - Supply line in vicinity of proposed test site
- Normal combustion products of natural gas and air cannot achieve the required partial pressure of water vapor at "reasonable" rig operating pressures
- Additional steam injection will therefore be required
- Initial temperature of steam impacts the amount that can be injected because the steam must be heated to 3000°F by the combustion process

Operating Envelope Identified

Confidential & Proprietary

Simplified Facility Schematic

Current Rig Concept

Remaining Tasks

- Complete Design FMEA by 15/03/02
- Conduct Design Review (with customer participation)
 - scheduled for March 20, 2002 at ES&S
- Complete facility infrastructure by 06/28/02
- Complete Rig Fabrication by 08/15/02
- 3 months evaluation period of rig operation to follow
- Target date for rig available to ceramic gas turbine community: 01/06/03

Honeywell

Advanced Microturbine System Cooperative Agreement No. DE-FC02-00CH11061

Motivation and Strategy

- Original Honeywell AMS contract did not address critical ceramic component commercialization requirements
- New program strategy is required to develop the infrastructure and materials & process engineering disciplines necessary to overcome those barriers, which currently prevent structural ceramic component commercialization in advanced heat engines
- Revised program plan provides approach to resolve each of these issues and follows a natural progression based on past DOE-funded efforts at HES&S
- Focus will be on very near-term ceramic component production capability for premium gas turbine applications such as advanced industrial microturbines for distributed power generation
- Effort will draw heavily on "lessons learned" from the problems and successes on previously completed ceramics development and demonstration programs

Work Breakdown Structure

Mature Low-Cost Near-Net-Shape Manufacturing Of Large Integral Ceramic Components

Nozzle Rings

Blisks

Radial Turbine Wheels

N 00 0 14-95-2-0 0 06 Hone ywell Confidential

Milestones

 Establish Baseline Gelcast Process Map 	3/02
 Gelcast Nozzle & Blisk Tooling Designed & Procured 	7/02
 Optimized Nozzle Ring & Blisk Fab Processes Fixed 	4/03
Provide "Proof of Consistent Process" Parts	10/03
Provide Initial Design Database	3/03
Provide Confirmatory Database	12/03
Low Cost EBC Approaches Identified	10/02
 HSBR Screening Tests @ Simulated Engine Conditions 	6/03
 Demonstrate Final Coating Approach On Nozzle Ring 	12/03

Top Level Summary

- Benefits to Selected Microturbine OEM
 - Delivery of high quality ceramic components
 - Mature low-cost near-net-shape fabrication process
 - Adequate oxidation protection
 - Joint development of publicly available material design database
 - Access to Honeywell ceramic gas turbine design & life prediction expertise
- Benefits to the Government
 - Build upon past investment and successes in ceramic gas turbine technology development
 - Participation of ORNL in key development activities
 - component characterization & database generation
 - oxidation protection system evaluation
 - UDRI (Mechanical Testing in Moist Environment)
 - Northwestern University (Coating Materials Fundamentals)
 - Argonne National Lab (NDE Characterization of EBCs)

Summary DOE Hot Section Components for AMS

OBJECTIVES: Characterize Oxidation Behavior of Uncoated and Coated Silicon Nitride Materials

STATUS:

 Completed Characterization of Substrate Materials and First Generation EBC in ORNL Keiser Rig

Substrate and EBC Evaluation in Moist Environment Provides

- Fundamental Understanding of Oxidation Processes
- Low Cost Screening of Candidate Coating Systems

Enables Development of Improved Substrate Materials and EBC Systems

Summary **DOE High-Velocity High-Pressure Burner Rig**

OBJECTIVES: Develop Burner Rig Simulating Advanced Turbine Engine Environments

STATUS:

- Preliminary Design Completed
- Facility Infrastructure Being Built
- Part of DOE Environmental Test Center

Substrate and EBC Evaluation in Simulated Turbine Environment Provides

- Fundamental Understanding of Oxidation Processes at Extreme **Conditions**
- Screening of Candidate Coating Systems prior to High Risk Engine **Tests**

Summary DOE Advanced Microturbine System

OBJECTIVES: Prepare for Commercialization of Ceramic Turbine Components

- STATUS: Contract Details in Negotiation, FY2002 Funding Released
 - Started Low-Cost Net Shape Fabrication Process Development

Process Maturation and EBC Refinement & Evaluation Provide

- Proven Robust Low Cost Process
- Large Integral Si₃N₄ Components
- Proven Low Cost EBC Process
- Material Design Database

Enables Accelerated Commercialization of Ceramics in Small Gas Turbines